CHROMATOGRAPHY OF COMPOUNDS OF BIOLOGICAL INTEREST ON GLASS FIBER, PARAFFIN-COATED, AND UNTREATED CELLULOSE PAPER*

CECILE H. EDWARDS, JAMES O. RICE**, JAMES JONES**, LAWRENCE SEIBLES**, EVELYN L. GADSDEN AND GERALD A. EDWARDS Department of Home Economics and Chemistry, The Agricultural and Technical College of North Carolina, Greensboro, N.C. (U.S.A.)

(Received December 5th, 1962)

The development of a rapid, sensitive, chromatographic method employing glass fiber paper by DIECKERT and coworkers¹ has made possible the analysis of a variety of compounds, including glycerides², phospholipids³⁻⁵, sugars⁶, polybromostearates⁷, saponins⁸, tung oil⁹, bile acids¹⁰, steroids^{11, 12}, sterols^{2, 13}, triterpenoids¹⁴, and phosphatides¹⁵. The separation of cholesterol and its esters on paraffin-dipped paper has been described by SMITH¹⁶. ASHLEY AND WESTPHAL¹⁷ have used paraffin oil-treated paper in the chromatography of aliphatic acids. Cellulose paper, untreated, has been employed for the separation of numerous compounds.

Because reports in the literature of studies employing glass fiber, paraffin-coated, and standard filter paper did not extend adequately to the biological compounds of interest in our studies with the rat, we have explored the use of several new solvent systems for the development of chromatograms prepared on these papers. In the present work, the migration characteristics of selected fatty acids, methyl esters of fatty acids, and other naturally occurring compounds have been studied on glass fiber and paraffin-coated paper. In addition to customary heating of the sulfuric acid-sprayed paper, iodine vapor has been used to detect compounds on glass fiber paper. The migration characteristics of fifty-five selected compounds, including amino acids, vitamins, purines and other biologically important substances, have been determined on untreated cellulose paper in one to six solvent systems.

PROCEDURES

Glass fiber paper***, 9×25 cm, was heated in a muffle furnace at 600° for 30 min. The paper was impregnated with a 0.4 % solution of sodium silicate according to the procedure of SWARTWOUT et al.¹³.

Large filter paper sheets' especially selected for chromatography were used to obtain values listed for compounds in Table III. Paraffin-coated paper was prepared

J. Chromalog., 11 (1963) 349-354

349

^{*} This work was supported in part by grants from the National Institutes of Health, Department of Health, Education, and Welfare (A-1464), and National Science Foundation (12242). ** Undergraduate Research Participants, National Science Foundation.

^{***} No. 934 AH, Reeve Angel and Company, Clifton, New Jersey. † No. 5-714, Whatman No. 1, 18 × 22 in., from Fisher Scientific Company, Silver Spring, Maryland.

by dipping sheets of this filter paper in a 5% solution of paraffin in petroleum ether and allowing them to dry.

The compounds used as reference standards were secured from commercial sources. They were dissolved in suitable solvents and made up to contain $500 \ \mu g/ml$. A line 5 cm from the bottom of the sheets was made with a lead pencil, and the positions of compounds were marked approximately 3 cm apart. Samples were applied to these reference positions with micropipets and allowed to dry. The paper was suspended in a covered rectangular glass jar with the upper 3 cm being held in the solvent by means of glass rods. With the treated glass paper, approximately 7 min were required for the solvent front to migrate to within 2 cm of the bottom edge of the paper. The chromatogram was removed and allowed to dry on a rack in a fume hood until the solvent odor could no longer be detected.

To locate the compounds after chromatography, the glass fiber papers were sprayed with concentrated sulfuric acid from an atomizer, placed on a glass rod support and heated in an oven at 110° for 4 min to produce charred spots. Some of the compounds were detected by reaction with iodine vapor to produce brown spots.

Approximately 15 to 24 h were required for descent of the solvents on the plain filter paper or paraffin-coated paper. The papers were supported on glass rods by stainless steel clamps and allowed to dry in a fume hood. Compounds on untreated or paraffin-coated cellulose paper were detected by reaction with iodine vapor, spraying with a 0.5 % solution of ninhydrin in 95 % ethanol, fluorescence under ultra-violet light, or spraying with bromocresol green or antimony trichloride (24 % solution in chloroform).

RESULTS AND DISCUSSION

The migration characteristics on glass fiber paper of a selected group of fat-soluble compounds in various solvents are shown in Table I.

Two spots were obtained for some of the compounds in the solvents studied. As these compounds were commercial samples which were not further purified, the appearance of two spots represents the presence of impurities therein. 7-Dehydro-cholesterol may be separated from cholesterol by use of either isooctane or ethanol-ether-water (I:I:I or 2:I:2). Ergosterol can be separated from these two compounds in isooctane. Greater separation between linolenic and linoleic acid, or cholesterol and related substances can be obtained by employing longer strips of paper. Limited success was achieved in separating the methyl esters of the fatty acids, hexane-isooctane-chloroform (2:4:I) giving greatest separation.

The R_F values of several compounds on paraffin-coated paper, with butanolpropionic acid-water^{*} and chloroform-acetic acid-liquid paraffin (50:130:10) as solvents are presented in Table II. Slightly greater separation of cholesterol from 7-dehydrocholesterol and ergosterol is achieved in these solvents on paraffin-coated paper than on glass fiber paper.

Cholesterol may be detected on these chromatograms by spraying with Liebermann Burchard reagent or a solution of ferric chloride in 87 % phosphoric acid (Zlatkis reagent).

· · · · ·

^{*} Fresh solvent was prepared from equal volumes of two solutions: (A) 1246 ml of 1-butanol and 84 ml water, and (B) 620 ml of propionic acid and 790 ml of water.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		end	Quantity						RP 1	Rp values®						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Conpound	рß	11	1	8	3	4	5	ø	7	80	6	oI,	и	12	Er -
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cholesterol	20	1	0.34	I.00	70.0	0.98	0.82	0.58	0.00	0.79	0.00	I	0.93	1.	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Choline	25	I	1	ł	1	(.1	0.00	0.96	0.92	0.95	I	0.95	ļ	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7-Dehvdrocholestero		1	0.03	1	0.98	96.0	0.24	0.13	0.96	0.78	0.38	0.79	1	0.74	0.15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•		1	0.22^{b}	ł	• 1	1	0.800	0.63	1	0.82		1	1	ļ	0.62 ^b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dihydrocholesterol	50	1	0.26	1.00	ł	ł	ļ	1	ļ	ļ	I	0.90	ł	0.87	0.63
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ergosterol	, î,	1	0.01	1	0.99	0.95	١	۱	I	0.86	ł	0.15	0.93	0.85	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$)	.	1	0.15 ^b	Į		1	1	1	ļ	1	ŀ	0.71 ^b	ł	ł	ł
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fumaric acid	100	ļ	'	ļ	ł	1	ļ	1	ļ	0.88	ł	1	I	ļ	l
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Linoleic acid	1	2	0.16	0.18	0.83	16.0	0.15	0.12	0.04	0.33	0.12	ļ	1	ł	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ļ	ļ	ł	!	1	ł	ł	ļ	0.80 ^b	ł	0.82 ^b	ł	ł	ł	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Linolenic acid	ł	61	0.12	0.20	10.0	0.92	0.23	0.17	0.06	0.39	0.84	ł	ł	ļ	ł
-0.5 0.11 0.14 $$ <td></td> <td> </td> <td></td> <td>l</td> <td>ļ</td> <td>1</td> <td>• {</td> <td>' [</td> <td>, </td> <td>0.84^b</td> <td>1</td> <td> </td> <td>ł</td> <td>۰ł</td> <td>ļ</td> <td>. </td>				l	ļ	1	• {	' [, 	0.84 ^b	1		ł	۰ł	ļ	.
ate - 1.00 - - 0.91 - 0.96 0.90 0.96 0.90 0.96 0.97 - <td< td=""><td>Oleic acid</td><td>!</td><td>0.5</td><td>0.11</td><td>0.14</td><td> </td><td>l</td><td>ļ</td><td>{.</td><td>ļ</td><td>I</td><td>ł</td><td>١</td><td>1</td><td>1</td><td></td></td<>	Oleic acid	!	0.5	0.11	0.14		l	ļ	{ .	ļ	I	ł	١	1	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Methyl arachidonate	1	,	1.00		1	1	ł	1	ļ	16.0		0.96	0.90	0.96	0.16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Methyl laurate	۱	ł	ļ	1	1	ł	١	l	ļ	0.05	1	0.00	ł	1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Methyl linoleate	1	ļ	1.00	1	۱	ł	I	1	ľ	I	ł	0.91	0.96	79.0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Methyl linolenate		l	1.00	ł			Į	1	}	0.87	1	0.94	0.96	0.96	0.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Methyl myristate	1	1	١	ļ	ł	1	l	ļ		0.89	ł	0.92	0.96	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Methyl oleate	ļ		1.00	I	١	ł	1	I	ļ	0.90	ł	1	6.07	ļ	0.97
$ \begin{array}{ccccccc} \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Methyl stearate	1	1	0.94	ļ	1	ł	ł	{	J	1	ł	0.90	ł	1	!
e8Isooctane-chloroform $(1:1)$ -ethanol (100:9)9Ethanol-ether-water $(1:1:1)$ 010Hexane-isooctane-chloroform $(2:1:1)$ 1111Hexane-isooctane-chloroform $(2:1:1)$ 12Hexane-isooctane-chloroform $(4:1:1)$ 13Hexane-isooctane-chloroform $(2:4:1)$	Methyl palmitate	١	1	1	ļ	1	I	1	١	I	0.87	1	1	1	ļ	١
ethanol (100:9) $9 = Ethanol-ether-water (1:1:1)$ rm $10 = Hexane-isooctane-chloroform (2:1:1)$ rm $11 = Hexane-chloroform-ethanol-ether (1:1)$ r $12 = Hexane-chloroform-ethanol-ether (1:1)$ etrachloride $12 = Hexane-isooctane-chloroform (4:1:1)$ ether-water (2:1:2) $13 = Hexane-isooctane-chloroform (2:4:1)$	1 =	iooctai	le						11	sooctane	chlorof	orm (1:1				
Image: Image of the stand o	3 =	enzent	3-ethan	101 (100:5	(6				1	Ethanol-	ether-wa	ter (1:1	(I:			
e $13 = \text{Hexane-isooctane-chloroform}$ ether-water (2:1:2)		enzen hlorof(e Jrm tetroch	Inride						Hexane-i Hexane-c Hexane-i	sooctane hlorofori sooctane	-chlorof m-ethan -chlorof(orm (2:1 ol-ether		-	
) = Eurauor-euret-water (2.1.2) bTwo snots were obtained		-Hexal	ne ne		10				1	Hexane-i	sooctane	-chlorof		Î.		
	^b Two snots were of	otained	l-cuuci	-Watci 12	12.1					×						

TABLE I

CHROMATOGRAPHY OF COMPOUNDS OF BIOLOGICAL INTEREST

J. Chromatog., 11 (1963) 349-354

Compound	Qua	ntity	- Detection®	R _F va	lueb
Compound	μg	μί	- Detections -	I	2
Adrenaline	50		Brown with I ₂	0.29	
Acetic acid		10	Yellow with BCG	0.20	
Acetylcholine	50		Brown with I ₂	0.40	
Betaine	50		Brown with I	0.98	
Cholesterol	100		Blue with SbČl _a	0.73	0.71
Choline	50		Brown with I,	0.23, 0.46°	
Cystathionine	20		Purple with Nin	0.02	
7-Dehydrocholesterol	100		Fluorescent with U.V.	0.84, 0.94°	o.86
Ergosterol	100		Fluorescent with U.V.	0.84, 0.92°	0.80, 0.89
Ethanolamine		4	Purple with Nin	0.55	
Fumaric acid		10	Absorbs U.V.	0.54	ومسجد
α-Keto-γ-methiol-				01	
butyric acid	50		Purple with Nin	0.56	
Lactic acid	-	2	Fluorescent with U.V.	0.75	
Lecithin	100		Brown with I ₂	0.85	0.88
Linoleic acid		5	Brown with I ₂	0.84	0.76, 0.91
Linolenic acid		5	Brown with I2	0.84	0.73, 0.89
N-Methylnicotinamide	50	•	Brown with I	0.87	
Oleic acid	-	2	Fluorescent with U.V.	0.81	
S-Adenosylmethionine	50		Purple with Nin	0.09	
Serine	20		Purple with Nin	0.13	

TABLE II

 R_F values of selected compounds on paraffin-coated paper

^a $I_2 = iodine vapor; BCG = bromocresol green; SbCl_3 = antimony trichloride; Nin = nin-hydrin; U.V. = ultra-violet light.$

^b Solvents: I = butanol-propionic acid-water; <math>2 = chloroform-acetic acid-liquid paraffin (50:130:10).

° Separated into two spots.

In Table III are presented the R_F values of fifty-three compounds of biological interest in six solvent systems. Combinations of lutidine and methanol offer promise as solvents for the two-dimensional chromatography of compounds of biological interest, as excellent separation is achieved in them for a variety of compounds.

TA	BL	Æ	III	

 R_F values of selected compounds on untreated cellulose paper

	R_F values \times 100 ^B							
Compound	Lutidine	Methano!	Butanol– acetic acid	Ethanol- acctic acid	Phenol	Butanol– propionic acid-water		
Acetylcholine chloride					92, 91 ^b	75, 64 ^b		
Adenine	70							
Adenosine triphosphate	<u> </u>			·	44, 17, 6°	18, 8, 40		
Adenylic acid		<u> </u>			56	21		
DL-α-Alanine			30					
L-Alanine	22	70	31	·				
Allantoin		50						
p-Aminobenzoic acid	58		· 81	<u> </u>				
y-Aminobutyric acid	<u> </u>			44				
DL-α-Amino-n-butyric acid	36	55						

(continued on p. 353)

J. Chromatog., 11 (1963) 349-354

, , , , , , , , , , , , , , , , , , ,		••	R _F values	× 100°		
Compound	Lutidine	Methanol	Butanol– acetic acid	Ethanol– acetic aeid	Phenol	Butanol– propionic acid-water
4-Amino-5-imidazole-carboxami	ide —	48		25		
&-Aminoisobutyric acid	—	66			<u> </u>	
∝-Aminopimelic acid	54, 15 ^b	80, 73 ^b	57, 31 ^b	46, 26 ^b		<u> </u>
L-Aspartic acid	13	67				·
Adrenaline		70			·•	
S-Adenosylmethionine		.4				
Choline	3 6	73	38	39		
Creatine		58				
Creatinine	50	56	42	-		
Cytidilic acid		<u> </u>	<u> </u>		41	14
Cytidine		43			76	42
Ethionine	51, 23 ^b	74	52			
L-Glutamic acid	13	<u> </u>	· <u> </u>			
Glycine	17	64				
Guanylic acid		31		·	73, 3 ^{8 b}	46, 16 ^b
DL-Homocysteine	45, 17 ^b	72, 55 ^b		27		·
DL-Homocystine	16	55		- /		
Homocysteic acid					II	9
Homoserine	23	68	22			
Isoleucine	-3 47	63	59		· · · ·	
∝-Keto-y-methiolbutyric acid		59				
Leucine	50	<u> </u>	бт			
Lysinc		21			-	
L-Methionine	45, 24 ^b	53, 31 ^b				
Methionine sulfoxide				II		
Methoxinine					85	50
N ² -Methylnicotinamide	82		81		100	50 77
Methylserine		51				
Nicotinic acid amide	77	<u> </u>	70	·		
Pantothenic acid		71	/ -			
Phenylalanine	47	51				
Riboflavin	4 7	31				
Serine	19	65				<u></u>
Taurine	29	<u> </u>				
Thiamine			37	<u> </u>		
Threonine	23	69	24			
Tryptophan		35				
Tyrosine	47	55 69			-	
Urea	47	<u> </u>				-
Uridylic acid					32	15
Valine	38	60			52	+ 3
Vitamin B_{12}		30				_
Xanthine		28				
		20				

TABLE III (continued)

^a Solvents: Lutidine = 2,6-lutidine-water (65:35 v/v).

Methanol = absolute methanol-water (95.35 v/v). Methanol = absolute methanol-water (95:5 v/v). Butanol-acetic acid = *n*-butanol-glacial acetic acid-water (80:20:20 v/v/v). Ethanol-acetic acid = 95 % ethanol-glacial acetic acid (95:5 v/v). Phenol = Mallincrodt, USP "Gilt Label" phenol saturated with a solution of 6.3 % sodium citrate and 3.7 % potassium dihydrogen phosphate. Butanol-propionic acid-water = equal volumes of two solutions: (A) 1246 ml

n-butanol and 84 ml water, and (B) 620 ml propionic acid and 790 ml water.

^b Two spots were obtained.

^o Three spots were obtained.

SUMMARY

Selected organic compounds commonly occurring in plant and animal tissues have been chromatographed on glass fiber, paraffin-coated and untreated cellulose paper in a number of different solvent systems. The R_{F} values of these compounds represent new additions to the literature in the solvent systems studied.

REFERENCES

- ¹ J. W. DIECKERT, W. B. CARNEY, R. L. ORY AND N. J. MORRIS, Anal. Chem., 30 (1958) 1442.
- ² J. W. DIECKERT AND R. REISER, J. Am. Oil Chemists' Soc., 33 (1956) 123.
- ³ B. W. AGRANOFF, R. M. BRADLEY AND R. O. BRADY, J. Biol. Chem., 233 (1958) 1077. ⁴ M. BROWN, D. A. YEADON, L. A. GOLDBLATT AND J. W. DIECKERT, Anal. Chem., 29 (1957) 30.
- ⁵ J. W. DIECKERT AND R. REISER, J. Am. Oil Chemists' Soc., 33 (1956) 535.
- ⁶ J. W. DIECKERT AND N. J. MORRIS, Anal. Chem., 29 (1957) 31.
- ⁷ R. L. ORY, W. G. BECKFORD AND J. W. DIECKERT, Anal. Chem., 31 (1959) 1447.
 ⁸ J. W. DIECKERT AND N. J. MORRIS, J. Agr. Food Chem., 6 (1958) 930.
 ⁹ R. L. HOLMES AND E. T. RAYNER, J. Am. Oil Chemists' Soc., 35 (1958) 586.

- ¹⁰ J. G. HAMILTON AND J. W. DIECKERT, Arch. Biochem. Biophys., 82 (1959) 203.
 ¹¹ J. G. HAMILTON AND J. W. DIECKERT, Arch. Biochem. Biophys., 82 (1959) 212.
 ¹² J. G. HAMILTON, J. L. LIVERMAN, S. H. WILKES AND J. W. DIECKERT, Abstracts of Papers, 129th Meeting Am. Chem. Soc., 1956, p. 16c.
- ¹³ J. R. SWARTWOUT, J. W. DIECKERT, O. N. MILLER AND J. G. HAMILTON, J. Lipid Res., 1 (1960) 281.
- ¹⁴ J. W. DIECKERT, N. J. MORRIS AND A. F. MASON, Arch. Biochem. Biophys., 82 (1959) 220. ¹⁵ J. E. MULDREY, O. N. MILLER AND J. G. HAMILTON, J. Lipid. Res., 1 (1959) 48.
- ¹⁶ I. SMITH, in Chromatographic Techniques, Interscience, New York, 1958, p.227.
- ¹⁷ B. D. ASHLEY AND V. WESTPHAL, Arch. Biochem. Biophys., 56 (1955) 1.

J. Chromatog., 11 (1963) 349-354